Ceci est une alerte:

*Ramassage d’une commande* Prière d’attendre de recevoir le courriel de confirmation à cet effet avant de vous déplacer à nos bureaux pour récupérer votre commande. Merci de votre collaboration!


Logique arithmétique. L’arithmétisation de la logique

Logique arithmétique. L’arithmétisation de la logique

Discipline: Philosophie
Parution: 04 août 2010
Dans ce traité, l’auteur veut insister en particulier sur le retournement de la question de Frege :
« jusqu’où peut-on aller en arithmétique par la seule voie déductive ? ». Cette
question inaugurale de la logique formelle doit être révisée dans mon sens de
la question d’inspiration kroneckerienne : « jusqu’où peut-on aller en logique
par la seule voie arithmétique ? ».

Description

La logique arithmétique est la logique interne de l’arithmétique, c’est la traduction ou l’interprétation de la logique formelle dans le langage de l’arithmétique. Cette arithmétique n’est pas l’arithmétique formelle de Frege et Peano, mais l’arithmétique classique de Fermat à Kronecker jusqu’à la théorie contemporaine des nombres. L’hypothèse proposée ici suppose qu’après l’arithmétisation de l’analyse, chez Cauchy et Weierstrass, et l’arithmétisation de l’algèbre, chez Kronecker, la logique formelle a amorcé son arithmétisation avec Hilbert pour atteindre son aboutissement avec l’informatique théorique actuelle. Dans cette perspective, la méthode de la descente infinie de Fermat et l’arithmétique générale de Kronecker fournissent une critique constructiviste de l’induction transfinie en même temps qu’une preuve de consistance interne de l’arithmétique polynomiale. La position fondationnelle défendue dans l’ouvrage se réclame du constructivisme logicomathématique et constitue les assises d’un programme qu’on peut bien appeler « logique de la science » après Peirce et Carnap. Le motif recteur des travaux formels est d’ordre philosophique et c’est dans un esprit oecuménique que l’auteur a voulu mener ces recherches.

Suggestions de lecture

Revenir en haut